MultiPath TCP in OpenFlow Networks

Michael Bredel, Caltech@CERN
Motivation

MultiPath TCP
 ▶ Basics and Design Objectives
 ▶ Connection Setup
 ▶ Congestion Control and Fairness

OpenFlow Link-Layer MultiPath Switching
 ▶ OLiMPS - OpenFlow Link Layer MultiPath Switching
 ▶ Floodlight/OLiMPS OpenFlow Controller
 ▶ Path Calculation Engine

Preliminary Results
 ▶ International MultiPath OpenFlow Network
Multiple Paths?

Why do we need multiple paths?

- Data sets are growing exponentially
- Copying these data sets in reasonable time between sites requires a lot of bandwidth
Multiple Paths?

Why do we need multiple paths?

- Data sets are growing exponentially
- Copying these data sets in reasonable time between sites requires a lot of bandwidth

A single sperm has 37.5 MB of DNA information in it. That means a normal ejaculation represents a data transfer of around 1.6 GB in about 3 seconds ... and you though 4G was fast.
Multiple Paths?

Why do we need multiple paths?

- Data sets are growing exponentially.
- Copying these data sets in reasonable time between sites requires a lot of bandwidth.
- 40 Gbit/s or 100 Gbit/s end-to-end is not always available (e.g. transatlantic) or too costly.
- We are approaching the theoretical limit of fibre capacity.

![Graph showing Not Possible for 100 Gb/s, 40 Gb/s, and 10 Gb/s in terms of Gb/s in 50 GHz vs. OSNR in 0.1 nm [dB].]
Multiple Paths?

Why do we need multiple paths?

- Data sets are growing exponentially
- Copying these data sets in reasonable time between sites requires a lot of bandwidth
- 40 Gbit/s or 100 Gbit/s end-to-end is not always available (e.g. transatlantic) or too costly
- We are approaching the theoretical limit of fibre capacity
- Probabilistic backlog and delay bounds [5]

\[
P[B \geq b] \leq \epsilon_s = \frac{\Gamma\left(\frac{1}{2\beta}\right)}{2\beta(-\log \eta)^{\frac{1}{2\beta}}} \\
\eta = \exp\left(-\frac{1}{2\sigma^2} \left(\frac{C - \lambda}{H + \beta}\right)^{2(H+\beta)} \left(\frac{b}{1 - (H + \beta)}\right)^{2 - 2(H+\beta)}\right)
\]
Evolution of data center networks

- Traditional topologies are tree based
 - Poor performance
 - Not fault tolerant
- Shift towards multipath topologies
 - FatTree [1], BCube [2], EC2
Evolution of data center networks

- Traditional topologies are tree based
 - Poor performance
 - Not fault tolerant

- Shift towards multipath topologies
 - FatTree [1], BCube [2], EC2
LHC experiments and computing resources

- Aims at allowing physicists to test the predictions of different theories, e.g. searching for the Higgs boson
- Hosts 4 big experiments
- Produce approx. 15-25 petabytes data per year
- The LHC Computing Grid connects 170 computer centres in 36 countries
- Challenges: Moving from a strict hierarchic model to a mashed grid
LHC experiments and computing resources

- Aims at allowing physicists to test the predictions of different theories, e.g. searching for the Higgs boson
- Hosts 4 big experiments
- Produce approx. 15-25 petabytes data per year
- The LHC Computing Grid connects 170 computer centres in 36 countries
- Challenges: Moving from a strict hierarchic model to a mashed grid
Multipathing based on ECMP

- Paths are chosen randomly
- Deploying an (unknown) hash function
Multipathing based on ECMP

- Paths are chosen randomly
- Deploying an (unknown) hash function
Multipathing based on ECMP

- Paths are chosen randomly
- Deploying an (unknown) hash function
Multipathing - Collisions in (Data Center) Networks

Multipathing based on ECMP

- Paths are chosen randomly
- Deploying an (unknown) hash function
Multipathing based on ECMP

- Paths are chosen randomly
- Deploying an (unknown) hash function
Multipathing based on ECMP

- Paths are chosen randomly
- Deploying an (unknown) hash function
MultiPath TCP
MultiPath TCP (MPTCP) is an evolution of TCP that can effectively use multiple paths between a single transport connection. [3]

- It supports unmodified applications, since MPTCP looks like standard TCP.
- It works in today’s networks.
- It is standardized at the IETF.
MPTCP Connection Setup (simplified)

- Deploying new TCP options to indicate MPTCP and to join subflows
- For subflows, the server keeps the same state variables as for regular TCP
MPTCP Connection Setup (simplified)

- Deploying new TCP options to indicate MPTCP and to join subflows
- For subflows, the server keeps the same state variables as for regular TCP
MPTCP Connection Setup (simplified)

- Deploying new TCP options to indicate MPTCP and to join subflows
- For subflows, the server keeps the same state variables as for regular TCP

(1) SYN MP_CAPABLE A
MultiPath TCP - Connection Setup

MPTCP Connection Setup (simplified)

- Deploying new TCP options to indicate MPTCP and to join subflows
- For subflows, the server keeps the same state variables as for regular TCP

(1) SYN MP_CAPABLE A
(2) SYN/ACK MP_CAPABLE A
MPTCP Connection Setup (simplified)

- Deploying new TCP options to indicate MPTCP and to join subflows
- For subflows, the server keeps the same state variables as for regular TCP

1. SYN MP_CAPABLE A
2. SYN/ACK MP_CAPABLE A
3. SYN JOIN A
MPTCP Connection Setup (simplified)

- Deploying new TCP options to indicate MPTCP and to join subflows
- For subflows, the server keeps the same state variables as for regular TCP

(1) SYN MP_CAPABLE A
(2) SYN/ACK MP_CAPABLE A
(3) SYN JOIN A
(4) SYN/ACK JOIN B
A little bit of history:

- Packet switching pools circuits

Two circuits

A link
A little bit of history:

- Packet switching pools circuits
- Multipath pools links
A little bit of history:

- Packet switching pools circuits
- Multipath pools links

How should a link pool be shared?
MPTCP Congestion Control Design Goals

- MPTCP should be fair to regular TCP at shared links
 To this end, MPTCP should take as much capacity as regular TCP on a bottleneck link, no matter how many subflows are present.

- MPTCP should use efficient paths

- MPTCP should get at least as much throughput as TCP on the best path
 To this end, MPTCP should take congestion as well as RTTs into account
How does MPTCP congestion control work? (simplified)

- Maintain a congestion window w_r, for each subflow, where $r \in R$ ranges over the set of available paths.
- Increase w_r for each ACK on path r by

$$\frac{\alpha}{\sum_r w_r}$$

- Decrease w_r for each packet drop in subflow r by $w_r/2$
MultiPath TCP - Congestion Control

MPTCP ...
- uses all available paths
- moves data to least congested paths
MPTCP ...

- uses all available paths
- moves data to least congested paths
OLiMPS - OpenFlow Link-layer MultiPath Switching

- Addresses the problem of topology limitations in large-scale layer 2 networks
- Remove the necessity of a tree structure in the topology achieved though the use of Spanning Tree Protocol
- Allow for per-flow multipath switching and increase the robustness and efficiency of layer 2 network resources
- Integrate dynamic circuit provisioning systems like OSCARS and OpenFlow
OLiMPS - Use Case

Multipathing based on OpenFlow

- Full control, thus, paths can be chosen deterministically
- Applicable to a variety of flow definitions.
- Works also for a small number of flows
OLiMPS - Use Case

Multipathing based on OpenFlow

- Full control, thus, paths can be chosen deterministically
- Applicable to a variety of flow definitions.
- Works also for a small number of flows
OLiMPS - OpenFlow Controller

- Based on Floodlight [4]
 - Written in Java
 - Supports OpenFlow 1.0
- Implements a set of OpenFlow applications
 - ProxyARP
 - Pathfinder
 - Multipath Forwarding
- Allows for multiple paths between OpenFlow islands
Floodlight/OLiMPS controller architecture
Floodlight/OLiMPS controller architecture
OLiMPS Pathfinder and Multipath Forwarding

- Two modules (in contrast to the original Floodlight) implementing IRoutingService and extending ForwardingBase
- Calculate multiple link-disjoint paths from source to destination
- Per flow multi-pathing
- Reactive flow handling
 - New paths are calculated whenever a new flow appears at an edge switch
 - Flows are mapped to paths in a (capacity weighted) round robin manner
 - Flow rules are pushed to all switches of a path
Path setup

1. First packet of a new flow arrives at OpenFlow switch
2. Packet is forwarded to OpenFlow controller
3a. The controller calculates all paths between source and destination switch
3b. The controller installs the flow mods for one path for the new flow
4. Packets are forwarded on the newly installed path
Path setup

(1) First packet of a new flow arrives at OpenFlow switch
Path setup

(1) First packet of a new flow arrives at OpenFlow switch

(2) Packet is forwarded to OpenFlow controller
Path setup

1. First packet of a new flow arrives at OpenFlow switch
2. Packet is forwarded to OpenFlow controller
3a. The controller calculates all paths between source and destination switch
3b. The controller installs the flow mods for one path for the new flow
Path setup

1. First packet of a new flow arrives at OpenFlow switch
2. Packet is forwarded to OpenFlow controller
3a. The controller calculates all paths between source and destination switch
3b. The controller installs the flow mods for one path for the new flow
Path setup

1. First packet of a new flow arrives at OpenFlow switch
2. Packet is forwarded to OpenFlow controller
3a. The controller calculates all paths between source and destination switch
3b. The controller installs the flow mods for one path for the new flow
4. Packets are forwarded on the newly installed path
Path setup

1. First packet of a new flow arrives at OpenFlow switch
2. Packet is forwarded to OpenFlow controller
3a. The controller calculates all paths between source and destination switch
3b. The controller installs the flow mods for one path for the new flow
4. Packets are forwarded on the newly installed path
The Floodlight OpenFlow controller uses LLDP to discover the topology.

OpenFlow is used to configure multiple paths between the servers.

Pathfinder and Multipath Forwarding install flow forwarding entries for multiple paths between the servers to the Pronto 3290 OpenFlow switches.
SuperComputing 2012: Streaming from GVA to CHI
OLiMPS - New ideas and next steps

OLiMPS Roadmap

- Implement intelligent path selection, e.g. based on measurements
- Implement in-network load balancing
- Integrate QoS policies, e.g. rate limits per path
- Extend the error handling, e.g. seamless flow redirection
- Move to OpenFlow version 1.2/1.3

Some open (research) questions remain

- Where to do traffic load balancing: In the end hosts or in the network?
- Is the system still stable or can it oscillate?
- What is the overall performance of such a system in terms of resource efficiency, throughput, fairness, etc.
Summary & Conclusion

MultiPath TCP

- ... is an evolution of TCP that uses multiple paths between a single transport connection
- ... supports unmodified applications and works in today’s networks
- ... implementations work fine for moderate fast datacenter networks
- There is room for improvement on high speed networks, i.e. ≥ 10 Gb/s and WANs

OpenFlow Link-Layer MultiPath Switching

- ... removes some limitations in large-scale layer 2 networks
- ... allows for an effective calculation of multiple paths between source and destination
- There is room for improvement towards a production ready system

